U
    BŒeõ  ã                   @   s(   d dl Z d dlmZ G dd„ deƒZdS )é    N)ÚStemmerIc                   @   s*   e Zd ZdZd
dd„Zdd„ Zdd„ Zd	S )ÚRegexpStemmeraä  
    A stemmer that uses regular expressions to identify morphological
    affixes.  Any substrings that match the regular expressions will
    be removed.

        >>> from nltk.stem import RegexpStemmer
        >>> st = RegexpStemmer('ing$|s$|e$|able$', min=4)
        >>> st.stem('cars')
        'car'
        >>> st.stem('mass')
        'mas'
        >>> st.stem('was')
        'was'
        >>> st.stem('bee')
        'bee'
        >>> st.stem('compute')
        'comput'
        >>> st.stem('advisable')
        'advis'

    :type regexp: str or regexp
    :param regexp: The regular expression that should be used to
        identify morphological affixes.
    :type min: int
    :param min: The minimum length of string to stem
    r   c                 C   s$   t |dƒst |¡}|| _|| _d S )NÚpattern)ÚhasattrÚreÚcompileÚ_regexpÚ_min)ÚselfÚregexpÚmin© r   úl/var/www/nmhs-web.org.in/public_html/infoladakh/backend/venv/lib/python3.8/site-packages/nltk/stem/regexp.pyÚ__init__*   s    

zRegexpStemmer.__init__c                 C   s$   t |ƒ| jk r|S | j d|¡S d S )NÚ )Úlenr	   r   Úsub)r
   Úwordr   r   r   Ústem1   s    zRegexpStemmer.stemc                 C   s   d  | jj¡S )Nz<RegexpStemmer: {!r}>)Úformatr   r   )r
   r   r   r   Ú__repr__7   s    zRegexpStemmer.__repr__N)r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__r   r   r   r   r   r   r   r      s   
r   )r   Znltk.stem.apir   r   r   r   r   r   Ú<module>	   s   